

How to sell drip irrigation kits without having to be an agritech specialist

From our GDC innovation how-to-guide series

Today's agenda

- Innovation Challenge scenesetting and intro to Mwezi pilot
- Conversation with Mwezi
 - Why a training tool?
 - Demo of the tool
 - Lessons learned from Mwezi's
 experience selling solar-powered
 drip irrigation kits

Photo credit: Bopinc

• Q&A

About the GDC Innovation Challenge

A unique challenge that crowdsources innovations from GDC members and other organisations,

helps **pilot the best ideas**, and supports the broader last-mile distribution community to

replicate and learn from those innovations.

Funded by:

Improving the uptake of solar powered drip irrigation systems to small-scale farmers in Western Kenya

Agenda

1. Why we thought this tool was needed? – Mike Sherry

2. Overview demo of tool – Mike Sherry

3. Pilot results – John Okiri & Faith Nkirote

4. Q & A

Agenda

1. Why we thought this tool was needed? – Mike Sherry

2. Overview demo of tool – Mike Sherry

3. Pilot results – John Okiri & Faith Nkirote

4. Q & A

The Why

An existing customer base who would benefit from a well designed drip irrigation system

Theoretically, drip irrigation could **improve** the **productivity** of small scale farmers in Sub-Saharan Africa using less water, less fertiliser and improving crop yields.

To achieve these benefits an **appropriate** drip irrigation system needs to be specified that takes account of the small scale farmers individual circumstances.

The **complexity** of specifying an effective drip irrigation system and prevented more widespread uptake.

The project intends to digitise the **tools and best practice** needed to improve the uptake of solar powered drip irrigation systems.

Agenda

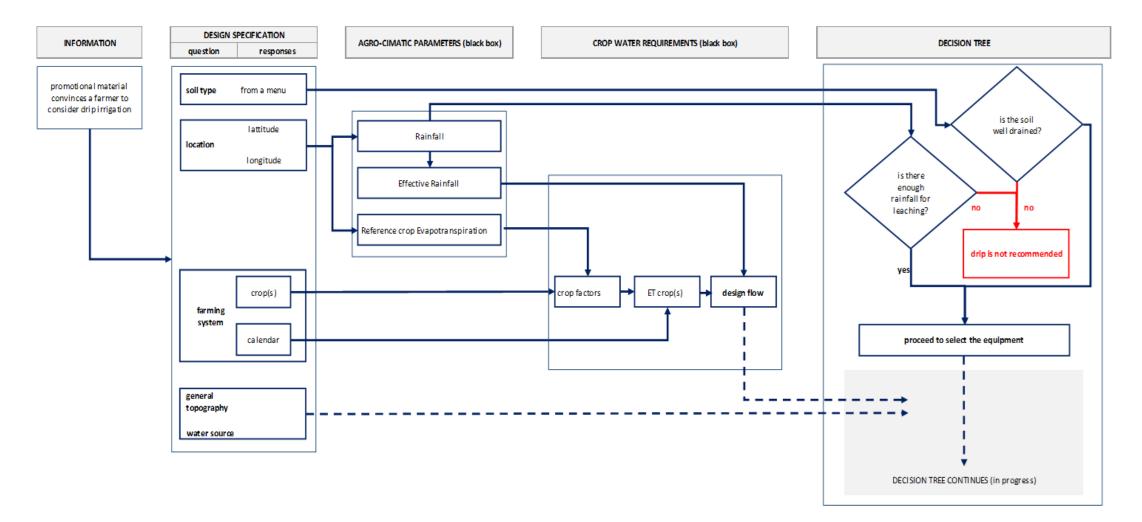
1. Why we thought this tool was needed? – Mike Sherry

2. Overview demo of tool – Mike Sherry

3. Pilot results – John Okiri & Faith Nkirote

4. Q & A

1. Module 1- Brochureware

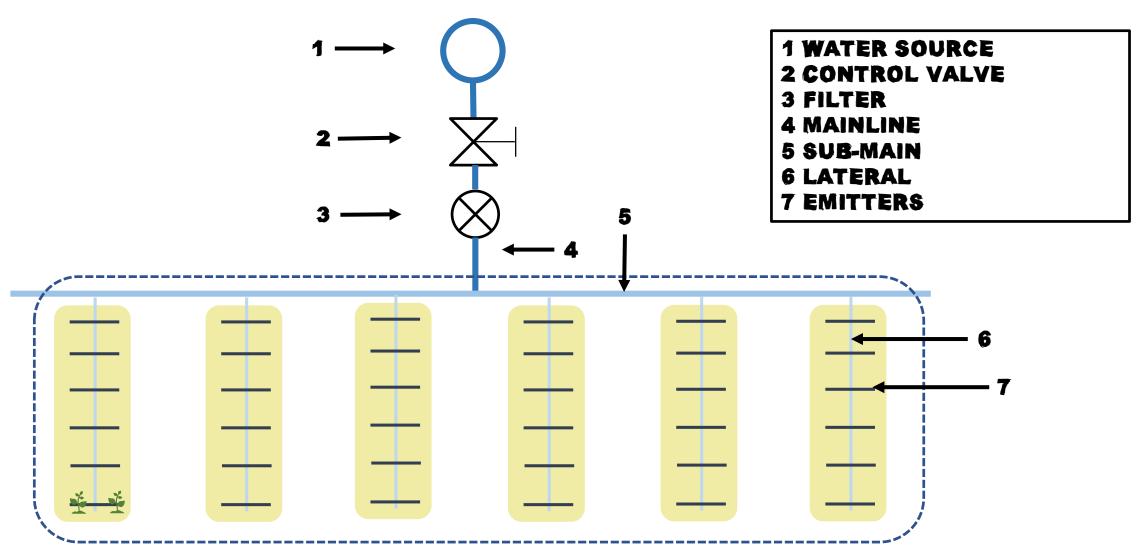

Learning and sales tool

- 2. Module 2 Customer Facing Decision Content Decision Trees
- Module 3 Digitisation
 Mobile app digital tool to deliver Modules 1 and 2.

1. Brochureware – paper & online training and information for staff, sales team and customers

- □ What is drip irrigation and what does it do?
- □ What are the key benefits for a small-scale farmer?
- □ What are the key components of a drip irrigation system?
- □ What different systems are available (description, advantages and disadvantages)?
- □ The importance of smart specifications for drip-irrigation systems.

Calculating Key design Parameters – decision tree


In summary – data & decisions

- 1. Soil type drip not recommended with poorly draining soil clay soils
- 2. How much water is required to grow healthy crops
 - □ What plants are to be grown
 - □ At that particular farm location
 - □ What time of year
 - Difference between rainfall, evaporation and plant needs
 - Area to be irrigated
 - □ Individual plant water requirement emitter distribution
 - □ Water source, storage and/or pump requirements

3. Specifying the Equipment

Output from above will provide a technical specification of an appropriate system and design layout for the individual farmer.

BASIC COMPONENTS

WORKED EXAMPLE – FARM SURVEY DATA

Crop Block	Units	Data
Length	m	50
Width	m	20
Area	m ²	1,000
Shape		Rectangle
Crop Name		Maize
Planting Date		1st March
Plant Spacing	m	0.4
Row Spacing	m	0.9
Water Source Capacity	Litres	5,000
Water Head	m	5
Longitude		36.475
Latitude		0.6800

WORKED EXAMPLE - CLIMAT & CROPWAT

1. Use the Cropwat & Climat to identify for the farm location the month with the largest precipitation deficit.

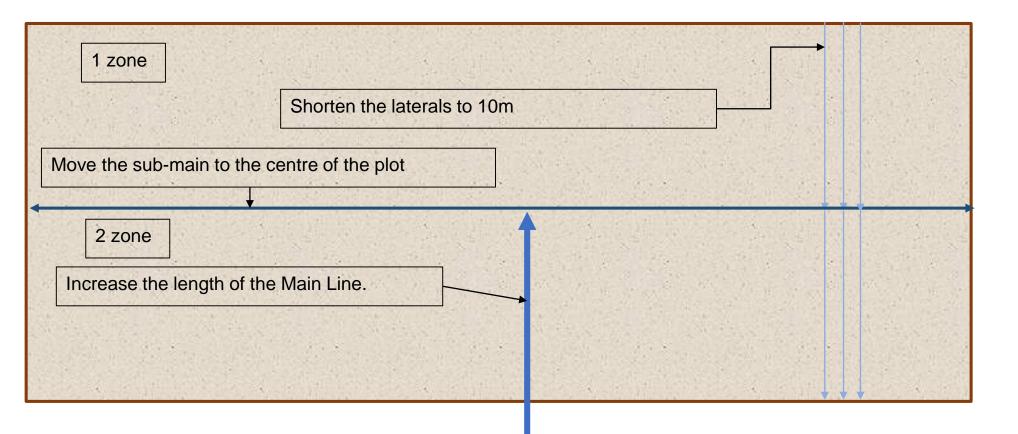
2. Record the value of ETo value for that month

				SCHEM	E SUPPI									(File:	C:\Progra		ETO PENMA 36)\CLIMWA			0\TORORO.pen)
ETo station: TORORO Rain station: TORORO			С	roppin	g patte	eri te	est0203	3												
Rain Station. TORORO													Country: I				on: TORORC			
						()							Altitude:	1171 m.		Latit	ude: 0.68	°N Lo	ongitude: 34	.16 °E
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec								
Precipitation deficit													Month	Min Temp	Max Temp	Humidity	Wind	Sun	Rad	ETo
1. MAIZE (Grain)	0.0	0.0	0.0	2.3	7.7	13.6	0.0	0.0	0.0	0.0	0.0	0.0		°C	°C	8	km/day	hours	MJ/m²/day	mm/day
													January	15.8	30.6	58	190	6.7	19.0	4.88
Net scheme irr.req. in mm/day	0.0	0.0	0.0	0.1	0.2	0.5	0.0	0.0	0.0	0.0	0	0.0	February	16.5	30.7	59	190	7.5	20.9	5.19
in mm/month	0.0	0.0	0.0	2.3	7.7	13.6		0.0	0.0	0.0	· · ·	9.0	March	17.0	30.1	63	190	6.5	19.8	4.89
in l/s/h		0.00			0.03		0.00						April	17.0	28.5	73	156	7.7	21.0	4.46
													May	16.8	27.5	76	138	6.8	18.6	3.85
Irrigated area	0.0	0.0	0.0	100.0	100.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	June	16.2	27.2	74	156	7.3	18.6	3.86
(% of total area)													July	16.0	26.8	73	156	6.5	17.8	3.76
													Auqust	15.7	27.1	73	156	5.5	17.2	3.75
Irr.req. for actual ar	ea 0.00	0.00	0.00	0.01	0.03	0.05	0.00	0.00	0.00	0.00	0.00	0.00	September	15.7	28.1	71	156	6.2	18.9	4.14
(l/s/h)													October	16.0	29.0	69	156	7.0	20.1	4.44
													November	16.1	29.0	68	173	7.9	20.9	4.63
													December	16.0	29.2	64	173	7.5	19,9	4.56
													Average	16.2	28.6	68	166	6.9	19.4	4.37
																		ETo 3.	86 mm/da	a <mark>y</mark>

WORKED EXAMPLE – INITIAL INPUT TO DETERMINE OVERALL WATER REQUIREMENT

Worksheet extract

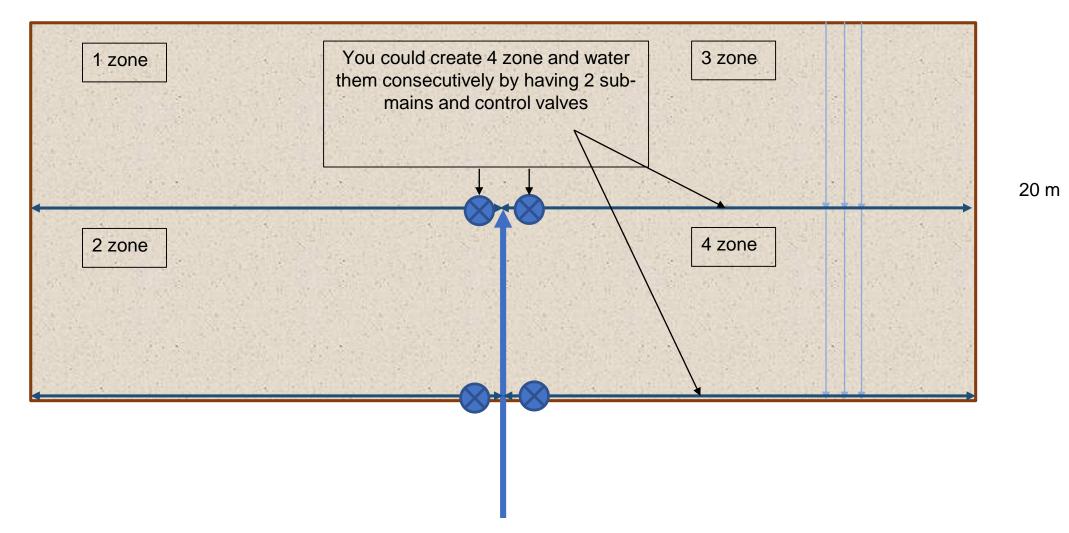
Data	Units	CROP BLOCK 1
Crop		Maize
Dimension	S	
Length	m	50
Width (m)	m	20
Area (L x W)	m 2	1,000
Maximum ETo	mm/day	3.86
Crop Factor (Look up)		1.20
Emission Uniformity		90%
Canopy Factor		1.0
Peak Water requirement		5.1
Max. Water requirement for block	litres/day	5,147


Notes
Look up in relevant sheet
Calculated or pull through from other sheet
Manual entry required
See Crop Factor sheet for values - if not listed choose nearest value or use 1.0
Ir climate is hot dry use 80%, moderate - 85%, humid - 90%.
=Canopy area/Plant Spacing x Row Spacing, use 1.0 for row crops, orchard crops will need to be determined.
From
previous
slide

WORKED EXAMPLE - DESIGNING THE LAYOUT

1 zone	The laterals need to run for 20m with a row spacing of 0.90 m.	to cover all plants		20 m
The sub-main supplie	es water to the laterals runs along the	ength of the plot.		
The Main Line supplies water water source.	to the sub-main from the		restricted in length by frict ase the diameter of the pipe 1	

WORKED EXAMPLE - CHANGING THE LAYOUT THE LAYOUT


Each pipe is restricted in length by friction loss – you may need to increase the diameter of the pipe or shorten its length or both!

50 m

WORKED EXAMPLE - CHANGING THE LAYOUT THE LAYOUT

Each pipe is restricted in length by friction loss – you may need to increase the diameter of the pipe or shorten its length or both!

WORKED EXAMPLE - INPUT LATERAL DATA

Worksheet extract

Lateral Design				
Crop Row spacing	m	0.90		Data in grey is calculated from initial inputs
Length of laterals required	m	1,111		
Plant Spacing	m	0.40		
No. of plants		2,778	_	
Emitter spacing on lateral	m	0.30		
Irrigation rate of lateral	litres/hr/m	2.00		This data can be obtained from supplier data sheets
Diameter of lateral	m m	16.00		
Total Number of emitters		3,704		
Total flow rate	Litre/hr	7,407	\backslash	
No. of laterals Division of laterals		56 1		
Length of laterals	m	20	$\backslash \rangle$	This figure is calculated by the worksheet– if the lateral
Friction loss for length of lateral	m	0.03	\mathcal{A}	design is out of limit then change either the diameter of the
Maximum head loss 20%, of 10m	m	2.00	N	
		ОК		lateral or divide the lengths

Once the laterals are designed within tolerances then design the sub-main

WORKED EXAMPLE - INPUT SUB-MAIN DATA

Worksheet extract

Sub-Main			
No. of sub-Mains		1	
Length of sub-Main	m	50	
No of laterals from each sub-main		56	The friction loss for this design exceeds maximum tolerance
Sub-Main flow	Litre/hr	7,407	The motion loss for this design exceeds maximum tolerance
Diameter of Sub-Main	m m	32	
		/	
Friction loss for, length of sub-main	m	3.56	1 x 32mm sub-main 50m long is out of limit
Maximum head loss 20%, of 10m	m	2.00	
		OUT OF LIMIT	
Sub-Main			Ohan waita Oliv Office Outh Main a
No. of sub-Mains		2	Change to 2 x 25m Sub-Mains
Length of sub-Main	m	25	
No of laterals from each sub-main		28	
Sub-Main flow	Litre/hr	3,704	
Diameter of Sub-Main	m m	32	
			Inside design tolerance
Friction loss for, length of sub-main	m	0.56	
Maximum head loss 20%, of 10m	m	2.00	
		OK	

Once the sub-main is designed within tolerances then design the main line

WORKED EXAMPLE - INPUT MAIN-LINE DATA

Worksheet extract

Mainline Design Length, m No. of sub-Mains Sub-Main flow rate, LPH		100 2 3,704	Change the length and diameter of the Main Line to meet tolerances.
Diameter of sub-main (mm)		50	
Friction loss for, length of Main-Line Maximum head loss 20%, of 10m	m m	0.46 2.00	Main Line design has two tolerances:
Velocity m/s Maximum velocity in Mainline - 2.5m/s		ОК 0.52 ОК	Friction Loss Max. Velocity

WORKED EXAMPLE - TOTAL DYNAMIC HEAD LOSS

Worksheet extract

Total Dynamic Head Loss (m)		
Emitter operating pressure		10.00
Head loss in lateral		0.03
Lateral elevation		-
Head loss in sub-main		0.56
Head loss in Valve -assume 2m		2.00
Field fitting head loss		5.00
Head loss in Main line		0.52
Filter head losses		2.00
Fertigation equipment head loss		5.00
Water Source depth		-
Suction head		1.00
Delivery head		1.00
Safety equipment head loss		2.00
Elevation difference		-
Total Head Required		29.12
Flow required through Mainline	LPH	2 704
Flow required through Mannine	LPS	3,704
		1.03
Watering time	Hours	1.39
Number of sub-Mains		2
Total watering time	Hours	2.8
Total daily watering requirement	Litres/Day	5,147
Current storage capacity	Litres	10,000
Shortfall		4,853

This data is used to specific an appropriate pump

Also determine if there is sufficient irrigation water available

WORKED EXAMPLE - MATERIALS & QUANTITIES

Worksheet extract

Materials and quantities		CROP BLOCK 1
Laterals		
Diameter	m m	16
Length	m	20
Division		1
Quantity		56
Total Length	m	1,120
Sub-Main		
Diameter	m m	32
Length	m	25
Division		1
Quantity		2
Total Length	m	50
Main Line		
Diameter	m m	50
Length	m	100
Quantity		1
Total Length	m	100
Emitter Specification		
Emitters	No.	3,704
Spacing	m	0.30
Volume	litres/hr/m	2.00
Number of Irrigation Zones		
Lateral		1
Sub-Main		2
Total zones		2

This data can be used to produce an accurate cost

WORKED EXAMPLE – FINAL DESIGN

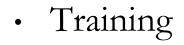
50 m

1 zone			2 zone
[Laterals 20m	-	
2 x 25 m sub-mains at the ed	lge of the plot		
Increase the length of the Mair			
100m			

Digitisation

- □ Mobile and web application
 - □ Capture data on site via a questionnaire (inputs)
 - □ Process the data through the decision tree (process)
 - Drip irrigation is not recommended (output)
 - □ Technical specification of equipment (output)
 - □ Match technical specification to LMDs product catalogue (output)
 - □ Provide customer with an accurate quote (output)
- □ Specification can be completed without mobile and web app manual processing

Agenda


1. Why we thought this tool was needed? – Mike Sherry

2. Overview demo of tool – Mike Sherry

3. Pilot results – John Okiri & Faith Nkirote

4. Q & A

Pilot results

• Customers feedback

- Learnings
- Way forward

Customers

• Christopher

- Durchased basic kit on 4th December 2020
- **1** day to install
- □ Successfully growing spinach, amaranth and spider plant

• Francis

- Durchased full drip kit 11th Feb 2021
- **2** days to install
- Plant kale and African nightshade for selling locally and own consumption
- □ No longer reliant on rainfall

• Peter

- Durchased full drip kit on 31st March 2021
- **3** days to install
- Planting vegetables

Options and recommendations

Everyone in organisation needs training about basic drip irrigation

☐ Sales team can offer drip irrigation but should refer to specialist sales team who have more knowledge

□ Farm survey data critical – can be paper or digital

□ Soil type determines if drip is recommended

Once data survey is complete either process in house or passed to partner supplier who specializes in irrigation and can specify the system needed.

□ Supply and installation can be done by supplier or trained in house team if you carry products

Agenda

1. Why we thought this tool was needed? – Mike Sherry

2. Overview demo of tool – Mike Sherry

3. Pilot results – John Okiri & Faith Nkirote

4. Q & A

Thank you

